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Appendix A.  The appendix includes more discussion on the theta-Ricker and generalized 

Beverton-Holt density-dependent models, a complete description of likelihood equations and 

methods of parameter estimation, elaboration on the simulation experiment, additional analyses 

of the A. nisus data set, TRPN best-fit and ALT models for 25 additional time series from the 

GPDD, and a presentation of the r-θ joint profile likelihood surface of a C. oenas data set for 

comparison with Bayesian posterior densities. 

  

 The appendix has six parts:  A1) discussion of plausible pgr models defined by the theta-

Ricker and generalized Beverton-Holt equations; A2) likelihood equations for all the stochastic 

models included in the analysis; A3) elaboration on the simulation experiment using a stochastic 

theta-Ricker with process noise model to obtain the frequency of best-fit r-θ estimates lying in 

the third quadrant of the r-θ plane and actual vs. nominal coverage plots to evaluate the accuracy 

of the likelihood ratio test for a limited sample size; A4) additional analyses of the focal 

Accipiter nisus (Eurasian sparrowhawk) population presented in the text; A5) theta-Ricker 

concave best-fit and supported convex ALT pgr models for 25 additional species from the 

Global Population Dynamics Database (GPDD) (NERC 1999); A6) Maximum likelihood based 

analysis of a Columba oenas (stock pigeon) density time series from the GPDD to compare with 

a Bayesian treatment of this model and data set in Ward (2006) and a least-squares point estimate 

by Sibly et al. (2005). 
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 We denote the continuous population density at time t by Nt ≥0, a set of data by NT = {N1,…, 

NT}, and define the associated pgr data by loge(Nt+1/Nt).  Using the natural logarithm of 

population density Nt has useful statistical and heuristic advantages when conducting statistical 

inference with the models considered here (Dennis and Taper 1994, de Valpine and Hastings 

2002, Turchin 2003).  We denote the true state variable (the potentially unobserved true 

population density) by xt = loge(Nt), constituting the true population density trajectory XT = 

{x1,…, xT}, and the observed density (data) denoted by yt which makes up the complete set of 

observations YT = {y1,…, yT}. 

 

SECTION A1. GEOMETRICAL DESCRIPTIONS AND CALCULUS OF TWO DETERMINISTIC PGR 

MODELS 

 

 We first review the qualitative features of the deterministic pgr curves for both the limiting 

behavior as Nt→0 or Nt →∞ (for fixed t) and the slope at the point equilibrium N* where the pgr 

is zero for the theta-Ricker and γ-BH models.  We comment that the theta-Ricker with θ fixed at 

1 (also known as the Ricker model) and γ-BH model with γ fixed at 1 are special cases of a 

general model presented and discussed by Schnute (1985). 

 Theta-Ricker density dependence (Thomas et al. 1980) models the pgr curve as 

! 

g(Nt ) = r(1" (Nt /K)
# , where r is the maximum pgr which is approached monotonically as 

population density declines to 0, K>0 defines the density at which the pgr is 0, and θ describes 

the form of the density dependence (Fig. 1).  The slope of the theta-Ricker model at the point 

equilibrium 

! 

N
* = K for all t (the carrying capacity) is −rθ/K.  Thus, for r and θ both negative or 

both positive, the pgr curve is decreasing at the point equilibrium.  If either r or θ equal 0, the 
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pgr curve is 0 for all Nt.  If they are of opposite signs, the pgr curve is increasing over all Nt.  

Thus, the axes and the second and fourth quadrants of the r-θ plane are biologically implausible 

hypotheses for density-dependent regulated population growth.  When r and θ are both positive, 

the shape of the pgr curve is well known (Turchin 2003) and ranges between concave for 0<θ<1, 

linear at θ = 1, and convex when θ>1, with limiting behavior pgr→r as Nt→0 and decreasing 

towards −∞ as Nt→∞ (Fig. 1).  For both r and θ less than 0, the pgr→∞ as Nt→0 and decreases 

towards r as Nt→∞.  Although describing locally similar pgr curves around 

! 

N
* (Fig. 1) as 

parameters from the first quadrant of the r-θ plane, third quadrant parameters are nevertheless 

implausible because of the unrealistic pgr values for low values of Nt. 

 The generalized Beverton-Holt (γ-BH) sets 

! 

g(Nt ) = r " ln(1+ (Nt /K)
#
) (Maynard Smith and 

Slatkin 1973), where γ controls the shape of density dependence and K is the density for which 

! 

dg(Nt ) /dNt  is maximized.  Assuming r>0, positive values of γ can produce concave (0<γ≤1) or 

sigmoidal (γ>1) declines in the pgr curve, with the pgr→r as Nt→0 and pgr→−∞ as Nt→∞.  

Although less tractable statistically in comparison to the theta-Ricker model (i.e. there is no 

convenient transformation allowing linear or power regression to be used for parameter 

estimation), the γ-BH model has been useful in estimating general shapes of pgr curves and is 

perhaps more biologically appropriate (Bellows 1981, Getz 1996).  Additionally, the γ-BH model 

is an alternative model that may offer some stability to parameter estimation because of the 

following.  The equilibrium 

! 

N
*

= K(e
r "1)1/#  of the γ-BH model and the slope of the pgr curve at 

this point given by 

! 

"#(er "1)1"1/# /Ker  imply that the parameter subspaces r≤0 and γ≤0 are 

biologically nonsensical regions for populations regulated by density dependence because γ = 0 

creates a singularity in the model, r≤0 yields 

! 

N
*
" 0 , and r>0 with γ<0 result in a pgr curve with 

positive slope at 

! 

N
*.  Thus, for pgr data that are decreasing with density, parameter estimates 
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would be expected only in the first quadrant of the r-γ plane, rather than two quadrants as in the 

theta-Ricker model. 

 

SECTION A2.  MODELS AND LIKELIHOOD EQUATIONS 

 Time series models and their likelihood functions are standard tools in population ecology, 

and we refer readers to Dennis and Taper (1994), Hilborn and Mangel (1997), or de Valpine and 

Hastings (2002) for clear introductions and examples of their construction in this field of science.  

Introductions with more general statistical and theoretical material can be found in Tong (1990) 

or, for example, Shumway and Stoffer (2000). 

 We include process noise, observation error, or both, as stochastic elements of our models to 

explain differences between the deterministic predictions and data.  Throughout we assume both 

process noise and observation error are additive, independent and normally distributed, in 

logarithmic population space.  The stochastic process model can be written as 

! 

xt+1 = F(xt ," t ) = xt + g(xt ) +" t
, where 

! 

F :R" R  is the deterministic part of the model and υt is 

normally distributed with zero mean and standard deviation σp.  The stochastic observation 

model G we use sets yt = G(xt, εt) = xt + εt, where εt is normally distributed with zero mean and 

standard deviation σo.  The set of model parameters is denoted by Θ .   

 For density-dependent models with process noise only, observations yt are assumed to be 

exactly the values of xt, and the likelihood of the parameters is the product of the conditional 

probability density function values at yt+1, given yt and the parameters Θ  of the model, for 

t=1,…,T-1.  For the specific case of the theta-Ricker and γ-BH models with process noise, the 

log-likelihood equations are given by 
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respectively.  For these models, the least squares and maximum likelihood (ML) estimates of the 

structural parameters (i.e. all but the variances) are equivalent (Shumway and Stoffer 2000). 

 Two ways in which the process noise only parametric models described above may be 

incorrect/inadequate for real data are because of process misspecification or by omission of 

observation error.  Process misspecification is beyond the scope of this research.  However, we 

can include observation error.  The simplest way is to model variation in data as a combination 

of the phenomenological model and observation error, but no process noise.  For this model, the 

value of the true population density at x1 must also be estimated and is included in the vector Θ.  

Given x1, the theta-Ricker deterministic model, and a set of structural parameters, the 

deterministic trajectory is given by 

! 

X
T = x

t
:  x1 is given and x

t
= x

t"1 + r(1" (exp(x
t"1) /K)#  for t = 2,...,T{ }  Eq. A.3a 

and the associated log-likelihood equation is   

  

! 
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, . Eq. A.3b 

 The most realistic model we consider combines both process noise and observation error with 

a state-space approach.  For a theta-Ricker model, the likelihood of Θ  = (r, K, θ, σp, σo) is 

! 

L " |Y T( ) = P Y
T
| X

T
,"( )P(XT

|")dXT#  Eq. A.4 
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where 

! 

P Y
T
| X

T
,"( )  is the conditional probability density of the data, given the states and the 

error model G, and 

! 

P(X
T
|") is the conditional probability density of the states given the 

process model F.  A general description of the numerical integration procedure we follow for 

calculating the likelihood equation Eq. A.4 is given in Kitagawa (1987) and de Valpine and 

Hastings (2002).  We refer the reader to de Valpine and Hastings (2002) for a population ecology 

based example and the exact recipe we follow (with the exception of the initial state distribution, 

which is discussed below).  This method is based on numerical integration of the likelihood and 

thus approximates the true likelihood, allowing us to use ML methods to obtain best-fit point 

estimates, construct joint profile likelihood surfaces, conduct likelihood ratio tests of alternative 

parameters (models), and use information-theoretic methods of model selection. 

  

SECTION A3.  SIMULATION EXPERIMENT TO TEST FOR 3RD QUADRANT ML ESTIMATES 

 

 We performed a simulation experiment to evaluate the frequency with which point estimates 

of r and θ in the best-fit theta-Ricker model will be found in the third quadrant as discussed in 

section A1, when the true generating parameters are in the first quadrant and describe 

biologically plausible sigmoidal pgr curves.  To maintain emphasis on likelihood surfaces in the 

absence of complicating factors such as observation error or model misspecification, we 

generated data with process noise but no observation error using 

! 

x
t+1 = x

t
+ r(1" (exp(x

t
) /K)

#
) +$

t
 to simulate population density trajectories.  For data time 

series YT that have information about r with points away from K, e.g. the population undergoes 

some perturbation or deterministic cycles induced by strong density-dependent effects, point 

estimates of the true generating values were very accurate and negative estimates of θ did not 
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occur using sample sizes T = 10, 20, or 50 and for two levels of process noise σp = 0.05 or σp = 

0.25.  For stationary data time series without perturbations or cyclic deterministic attractors, 

negative estimates for r and θ did occur.  Figure 1B-C in the main text presents the distribution 

of r and θ maximum likelihood estimates from Eq. A.1 fit to each of 300 time series from such a 

scenario where the generating parameters are r = loge(1.2), θ = 2, K = 1, and σp = 0.05. 

 There are a number of methods available for constructing confidence regions to evaluate the 

plausibility of alternative parameters (models) in the same model family.  Some common 

approaches (e.g. the score and Wald statistics) are obtained from the expected or observed 

information matrices evaluated at the ML point and assume elliptical confidence regions 

(Severini 2000).  The potential disjoint and hyperbolic regions of likelihood values similar to the 

ML solution in the parameter space defining the pgr curve of a theta-Ricker model (Figs. 1B-C) 

demonstrate that these methods could be highly inaccurate and not fully characterize confidence 

regions.  (The shape of the regions might be made more elliptical by re-parameterization, which 

could improve the performance of these methods, but we use the standard parameterization to 

compare to previous work.)   

 We also used the simulated time series and associated   

! 

l( ˆ " ) values of Eq. A.1 to evaluate the 

performance of the likelihood ratio test (LRT) with limited sample size.  The alternative model in 

this case is the theta-Ricker with ψ0 fixed at the “true” values of (r, K, θ, σp) used in the 

simulation, so we compare the sample quantiles defined by 
  

! 

"#0
:= 2(l( ˆ $ ) % l( ˆ $ #0

)) with the 

theoretical quantiles of a 

! 

"
4

2 distribution.  For this case of a perfectly correct model structure, we 

found that using the LRT to obtain quantiles when estimating confidence regions with 

unbounded ML parameters consistently exceeds (slightly overestimates) actual coverage using 

the nominal quantiles and is improved by bounding r and θ estimates above 0, thereby forcing 
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the ML solution to correspond more closely to the consistent mode in the likelihood function 

(Fig. A1). 

 

SECTION A4.  ADDITIONAL ACCIPITER NISUS MODEL ANALYSES AND DATA SETS 

 

 For each of the models described in section A2, we optimized the objective functions Eqs. 

A.1-A.4 using a Nelder-Mead algorithm given the A. nisus data time series from the GPDD (ID 

#6575) which has a GPDD assigned reliability rating of 3 on a scale of 1 (worst) to 5 (best).  The 

results are shown in Table A1.  We used multiple restarts with different initial parameter values 

to ensure the highest chances of convergence on global optima.  For the density-dependent 

model including observation error but no process noise, Eq. A.3, the likelihood surface was quite 

complex due to estimating x1, so we also included runs with a simulated annealing algorithm to 

obtain maximum likelihood parameter estimates.  Table A2 summarizes these results. 
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Table A1.  A. nisus population time series from two different sources. 

 Population Size  

Year GPDD Saether et al. (2002) Digitized 

1972 33  

1973 36  

1974 39  

1975 33 33 

1976 34 34 

1977 29 29 

1978 36 36 

1979 32 32 

1980 38 38 

1981 39 39 

1982 32 32 

1983 34 35 

1984 34 34 

1985 33 32 

1986 33 32 

1987 36 35 

1988 35 34 

1989 30 29 
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Table A2.  Models and associated statistics given the A. nisus data set.  Estimates of 

! 

ˆ N 
* rather 

than 

! 

ˆ K  are provided for comparison between model families.  See main text for description of 

ALT models.  Other model abbreviations are: RPN- Ricker (θ = 1) with process noise; TRPN- 

theta-Ricker with process noise; TRSS- theta-Ricker with process noise and observation error; 

TROE- theta-Ricker with observation error; BHPN- Beverton-Holt (γ = 1) with process noise; γ-

BHPN- generalized Beverton-Holt with process noise. 

 

Model and likelihood location 

 

r 

 

N* 

 

θ, γ 

 

σp 

 

σo 

 

! 

ˆ N 
1
 

 

  

! 

l(") 

RPN Eq. A.1 (with θ = 1) best-fit 1.13 34.30 - 0.08 - - 18.61 

TRPN Eq. A.1 first quadrant best-fit 6.35e2 34.20 1.81e-3 0.08 - - 18.79 

TRPN Eq. A.1 third quadrant best-fit -0.37 34.41 -3.09 0.08 - - 19.07 

TROE Eq. A.3 first quadrant best-fit 0.17 34.72 17.06 - 0.07 35.94 21.48 

TROE Eq. A.3 third quadrant best-fit -0.08 33.60 -43.95 - 0.05 32.70 27.11 

TRSS Eq. A.4 interior first quadrant 

best-fit 

31.44 34.19 0.04 0.04 0.07 - 18.41 

TRSS Eq. A.4 interior third quadrant 

best-fit 

-0.25 33.98 -4.83 0.05 0.06 - 18.49 

TRSS Eq. A.4 ALT 0.71 34.23 2.2 0.03 0.07 - 18.30 

BHPN Eq. A.2  (with γ = 1) best-fit 9.15 34.18 - 0.08 - - 18.63 

γ-BHPN Eq. A.2 best-fit 5.17 34.21 1.15 0.08 - - 18.79 

γ-BHPN Eq. A.2 ALT 0.50 34.37 2.86 0.08 - - 18.44 
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 Several approximations are necessary when computing the integral in Eq. A.4 in practice, 

partly depending on the data used, which we mention here.  First, we chose for the probability 

density function of x1, prior to conditioning on any observations yt, a normal density with mean 

equal to the average of YT and standard deviation 0.15.  Other choices for this distribution (e.g. a 

normal density with mean set at the parameter K and standard deviation 0.10 or σp + σo ) did not 

qualitatively change the overall results, but do result in changes of the likelihood function value 

on an order of magnitude around 1.  For example, preliminary analyses using a standard 

deviation of σp + σo for the initial state resulted in global ML estimate at 

! 

(ˆ r , ˆ K , ˆ " , ˆ # p, ˆ # o) = (-0.58, 

34.07, -2.12, 0.06, 0.05) with a log-likelihood value of 19.55.  It is not appropriate to directly 

compare likelihood values for the state-space model Eq. A.4 with the other models due to 

treatment of the initial state and the resolution of the grid which influence numerical 

approximations of the likelihood; a fair comparison would involve approximating likelihood 

values based on a grid for all models A.1-A.4. 

 It is also necessary to put finite bounds on the lower and upper limits of possible values for xt, 

for which we chose xmin = loge(1) and xmax = loge (1000) (see Table A1 for the values of this 

population).  None of the probability distributions of Eq. A.4 were affected by these boundaries 

of the unobserved states.  Finally, it is necessary to pick a resolution of the grid used to 

approximate the continuous space of the continuous random variables xt and yt.  We partitioned 

the interval [xmin, xmax] into 4096 increments; finer partitioning did not appear to improve 

likelihood function values significantly. 

   The likelihood surface for the theta-Ricker state-space model Eq. A.4 requires some 

explanation and is relatively difficult to work with.  Parameter estimation of even comparatively 

simple linear state-space models with Gaussian distributed noise can often result in maximum 
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likelihood values at the boundaries of the parameter space, and in particular at either σp or σo 

equal to 0 (Dennis et al. 2006).  We found that for the theta-Ricker state-space model Eq. A.4 

and the A. nisus data set, when fixed values of r or θ are near zero, the optimization would 

converge on maximum at the boundary σp = 0, giving a model of essentially constant population 

size with data variation due to observation error.  Allowing σp ≈ 0 or σo ≈ 0 leads to numerical 

difficulties for the state-space model likelihood, so we bounded these with minimum allowed 

values of 0.01.  By initiating the optimization algorithm away from these boundaries at r = +/-1, 

K equal to the average of the population density, θ = +/-1, and σp = σo = 0.05, we were able to 

find maxima with σp > 0.01 and σo > 0.01 for the global and first-quadrant (of r-θ) 

maximizations over all parameters (Table A2, Figure 1).  We refer to these modes as the interior 

modes presented in Table A2; focusing on the interior modes increases both the biological 

plausibility of the model and chances of obtaining the consistent likelihood mode (Dennis et al. 

2006). 

 When computing the joint profile likelihood surface, we first selected a grid of points in the r-

θ plane to compute joint profile likelihoods (Fig. A3).  Joint profile likelihoods were obtained by 

starting the optimization from several regions of the σp-σo parameter subspace to obtain the best 

maximum value for fixed ψ0 = (r0, θ0).  Likelihood values for several grid points of the r-θ joint 

profile likelihood surface in the third quadrant along the r = 0 axis were minutely higher (on the 

order of 1e-2) than the result of the global maximization, reflecting the convergence tolerance of 

the latter, even with restarts, and the inherent difficulty of optimization on a nearly flat, long 

curved ridge.  

 We considered several versions of the A. nisus data set to detect whether differences between 

our and Sibly et al.’s (2005) negative estimates and Saether et al.’s (2002) positive estimate was 
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an artifact of slight differences in the time series analyzed and not of the different fitting 

procedures.  Although the particular references cited in Saether et al. (2002) and the GPDD 

differ, both time series describe the A. nisus population in Eskdale, Scotland through the 1970’s 

and 1980’s, as reported in Newton (1986), Newton and Rothery (1997), NERC (1999), and  

Saether et al. (2002).  Because we do not have access to the reference cited for the data in 

Saether et al. (2002), we digitized the data from this figure with the results shown in Table A1.  

Note that the caption to Figure 2 of Saether et al. (2002) labels the symbols incorrectly.  The 

empty squares show the A. nisus data, while the filled squares show data for the South Polar 

Skua Catharacta maccormicki (see the date ranges in their Supplementary Information to 

confirm).  Close inspection of the data reveals a few minor differences from the GPDD data set.  

As shown in Table A1 the two time series clearly describe the same data set for the period 1975-

1989, with a few points where the estimates differ by one.  The power regression method 

(regression of the pgr data loge(Nt+1/Nt) on

! 

{N
1

"
,...,N

T#1

"
}), over a grid of predetermined points 

used by Sibly et al. (2005) for the GPDD data set, our power regressions but without the grid for 

both the GPDD and digitized data sets, or maximum likelihood based estimates for both the 

GPDD and digitized data sets all yield negative estimates of θ (Table A3).  Saether et al. (2002) 

also used a maximum-likelihood approach – although crucially they estimated r independently 

with a separate analysis – and obtained a positive estimate of θ larger than 1, contradicting the 

conclusion of concavity. 
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Table A3.  Estimates of θ using maximum likelihood or power regression for three different 

versions of the A. nisus data set from Eskdale, Scotland.  We include results of Sibly et al. (2005) 

and Saether et al. (2002) for ease of comparison.   

Method Time range 

! 

ˆ "  CL lower CL upper Data source 

Saether et 

al. (2002) 

1975-1989 2.57 standard deviation 0.69 Saether et al. (2002) 

power 

regression 

1975-1989 -5.01 -20 5.01 digitized from Fig. 2 

in Saether et al. 

(2002) 

ML 1975-1989 -5.59  digitized from Fig. 2 

in Saether et al. 

(2002) 

power 

regression 

1975-1989 -3.98 -15.8 6.31 GPDD 

ML 1975-1989 -4.27 not provided GPDD 

Sibly et al. 

(2005) 

1972-1989 -3.16 -12.6 10 GPDD 

ML 1972-1989 -3.09 see text, figure 2A GPDD 

 

SECTION A5.  ADDITIONAL DATA SETS 

 

 Table A2.4 and Fig. A2.4 provide the specific details of the additional data sets referred to 

in the main text and supplement Fig. 3. 
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Table A4.  Parameter estimates of the theta-Ricker with process noise model Eq. A.1 fit to an 

additional 25 data sets from the GPDD (ID number and reliability value are shown in 

parentheses).  If the location of the mode for the maximum likelihood was in the third quadrant 

of the r-θ plane, we also found the mode for a local maximum in the first quadrant.  LRT p-

values are for rejecting the ALT model chosen along the likelihood ridge, given the global and 

local best-fit models, and follow a 

! 

"
2

2 distribution.  T- length of the time series.  Model 

abbreviations: ML, gl- global maximum likelihood estimates; ML, lo- local maximum likelihood 

estimates; ALT- alt model with r and θ chosen and Eq. A.1 maximized in K and σp. 

 

Data set 

 

Model 

 

r 

 

N* 

 

θ 

 

σp 

 

LL 

LRT  

p-value 

ML, gl -0.07 3.94 -10.84 0.03 31.77 0.50 

ML, lo 23.91 3.96 0.02 0.03 31.48 0.67 

Abraxas grossulariata 

(6470, 2), Magpie moth, T 

= 17 ALT 0.06 3.97 6.95 0.03 31.08 - 

ML, gl -0.23 2.05 -2.59 0.16 7.05 0.20 

ML, lo 465.71 2.14 1.37e-3 0.16 6.37 0.40 

Abraxas sylvata (6467, 2), 

Clouded magpie, T = 17 

ALT 0.30. 2.20 1.86 0.17 5.44 - 

ML, gl -0.69 4.60e3 -0.26 0.30 -3.60 0.30 

ML, lo 620.08 4.41e3 3.93e-4 0.30 -3.66 0.32 

Acrocephalus scirpaceus 

(9871, 2), Reed warbler, T 

= 18 ALT 0.39 5.10e3 1.17 0.32 -4.80 - 
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Table A4 continued 
ML, gl -16.68 7.45 -0.08 0.77 -20.80 0.20 

ML, lo 604.94 7.64 2.15e-3 0.77 -20.81 0.20 

Aegolius funereus (9922, 

3), Tengmalm’s owl, T = 

19 ALT 1.18 10.56 1.10 0.84 -22.41 - 

ML, gl -0.63 3.11 -1.30 0.10 14.65 0.40 

ML, lo 150.14 3.13 0.01 0.10 14.58 0.43 

Agrotis segetum (6215, 2), 

Turnup moth, T = 17 

ALT 0.19 3.19 3.97 0.10 13.73 - 

ML, gl -1.22 9.42 -0.75 0.35 -5.70 0.45 

ML, lo 800.30 9.91 1.13e-3 0.35 -6.49 0.51 

Anas americana (5051, -1), 

American wigeon, T = 17 

ALT 0.70 10.72 1.27 0.36 -6.49 - 

ML, gl -0.11 4.25 -8.67 0.04 29.01 0.50 

ML, lo 71.55 4.28 0.01 0.04 28.69 0.69 

Caradrina morpheus 

(6277, 2), Mottled rustic, T 

= 17 ALT 0.19 4.29 4.44 0.04 28.31 - 

ML, gl 1.91 62.86 0.20 0.25 -0.63 0.15 Columba oenas (62, 4), 

Stock pigeon, T = 13 ALT 0.77 58.79 1.31 0.30 -2.52 - 

ML, gl 4.26 1.92e3 0.30 0.69 -9.46 0.20 Conophthorus resinosae 

(9228, 2), Red pine cone 

beetle, T = 10 

ALT 0.56 2.19e3 1.36 0.83 -11.07 - 

ML, gl -0.33 3.21 -2.99 0.06 21.28 0.45 

ML, lo 298.91 3.23 3.40e-3 0.06 21.11 0.53 

Ennomoa fuscantaria 

(6483, 2), Dusky thorn, T = 

17 ALT 0.24 3.26 4.08 0.07 20.48 - 
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Table A4 continued 
ML, gl -0.20 3.27 -5.37 0.05 26.41 0.50 

ML, lo 142.92 3.29 0.01 0.05 26.17 0.64 

Falcaria lacertinaria 

(6180, 2), Scalloped hook 

tip, T = 17 ALT 0.26 3.31 4.10 0.05 25.72 - 

ML, gl 7.26 1.36e4 0.09 0.68 -24.68 - Felidae (9693, 1), Cat, T = 

25  ALT 0.26 1.51e4 1.48 0.71 -25.89 0.30 

ML, gl 0.69 793.59 0.94 0.06 15.87 - Gadus macrocephalus 

(1810, 2), Pacific cod, T = 

13 

ALT 0.52 794.66 1.73 0.07 14.66 0.30 

ML, gl 0.92 2.10e3 0.73 0.22 1.87 - Hirundo rustica (9856, 2), 

swallow, T = 18 ALT 0.17 2.28e3 3.25 0.23 0.95 0.40 

ML, gl -5.01 1.58e3 -0.10 0.42 -13.38 0.50 

ML, lo 233.81 1.60e3 2.30e-3 0.42 -13.39 0.50 

Meles meles (9692, 1), 

Eurasian badger, T = 25 

ALT 0.45 1.87e3 1.57 0.44 -14.07 - 

ML, gl -1.00 41.50 -1.58 0.24 0.11 0.12 

ML, lo 5.40e3 44.43 2.74e-4 0.26 -0.76 0.28 

Ochlodes venata (3621, 4), 

Large skipper, T = 10 

ALT 1.19 46.83 1.16 0.30 -2.01 - 

ML, gl -10.76 5.26 -0.10 0.57 -9.50 0.15 

ML, lo 671.10 5.36 1.56e-3 0.57 -9.51 0.15 

Peromyscus maniculatus 

(6692, 2), Deer mouse, T = 

12 ALT 0.62 7.39 1.87 0.68 -11.40 - 
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Table A4 continued 
ML, gl -1.13 8.40e4 -0.73 0.10 15.52 0.36 

ML, lo 222.72 8.50e4 1.46e-3 0.10 15.50 0.37 

Reinhart hippoglossoides 

(1715, -1), Greenland 

halibut, T = 19 ALT 0.39 8.70e4 1.35 0.11 14.31 - 

ML, gl -0.06 2.66 -10.83 0.08 17.63 0.30 

ML, lo 1.31e3 2.80 5.96e-4 0.08 16.76 0.71 

Rhizedra lutosa (6268, 2), 

Large wainscot, T = 17 

ALT 0.37 2.82 2.19 0.09 16.42 - 

ML, gl 11.80 426.38 0.06 0.84 -18.70 0.15 Salmo salar (1626, -1), 

Atlantic salmon, T = 16 ALT 0.10 480.98 1.43 0.96 -20.60 - 

ML, gl -1.12 0.69 -0.73 0.21 2.37 0.20 

ML, lo 1.07e3 0.71 8.20e-4 0.21 2.25 0.23 

Salmo trutta (7023, -1), 

Brown trout, T = 17 

ALT 0.59 14.60 1.27 0.51 0.76 - 

ML, gl -1.33 12.43 -0.91 0.43 -5.11 0.20 

ML, lo 3.17e3 13.29 3.40e-4 0.45 -5.52 0.30 

Selasphorus platycerus 

(9380, 4), Broad-tailed 

hummingbird, T = 10 ALT 0.59 14.60 1.27 0.51 -6.72 - 

ML, gl 1.30 60.88 0.70 0.23 1.39 0.40 Spiza americana (9442, 2), 

Dickcissel, T = 28 ALT, l 0.28 64.52 3.63 0.24 0.47 - 

ML, gl -0.52 4.11 -1.70 0.05 25.52 0.40 

ML, lo 0.06 4.19 14.59 0.05 25.51 0.41 

Thera obeliscata (6428, 2), 

Grey pine carpet, T = 17 

ALT 0.06 4.19 14.59 0.05 24.61  

ML, gl -0.24 0.66 -19.54 0.35 -3.41 0.06 

ML, lo 849.79 1.48 9.04e-4 0.45 -5.53 0.50 

Zeiraphera diniana (6669, 

-1), Larch budmoth, T = 10 

ALT 0.65 1.61 1.05 0.48 -6.22 - 
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SECTION A6.  ANALYSIS OF COLUMBA OENAS TIME SERIES 

 

 We analyzed a C. oenas population density time series in the GPDD (ID #62, reliability rating 

of 4), which has two previously published analyses by the theta-Ricker model: Sibly et al. (2005) 

reported a least-squares 

! 

ˆ "  estimate of 0.20 (-0.60, 2), and Ward (2006) used the same process 

model with observation error, applying a Bayesian treatment for parameter estimation to estimate 

a posterior mode for θ at 0.38.  Similar to the analysis of the A. nisus data set, we used multiple 

restarts with different initial parameter values to ensure the highest chances of convergence on 

global optima and for the TROE model Eq. A.4 we also included runs with the simulated 

annealing optimization algorithm.  We found the ML estimate for the TRPN model Eq. A.1 at 

! 

(ˆ r , ˆ K , ˆ " , ˆ # p )  = (1.91, 62.86, 0.20, 0.25); for the TROE model Eq. A.3 the MLE parameter estimate 

was 

! 

(ˆ r , ˆ K , ˆ " , ˆ # 
0
,N

1
) = (1.91, 62.86, 0.20, 0.18, 0.92).  Figure panels A5A and A5C show the r-θ 

joint profile likelihood for the TRPN and TROE models.  The r-θ joint profile likelihood surface 

for both models show that the r-θ 0.95 confidence region based on the ML methods is 

qualitatively similar to the 95% central posterior density estimates for these parameters in Figure 

1 of Ward (2006).  An alternative TRPN model is given by (r, K, θ, σp) = (0.77, 58.79, 1.31, 

0.30), supported at a LRT p-value of 0.15 (Table A4, Fig. A5B).  
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FIG. A1.  Comparison of actual vs. nominal coverage using theoretical quantiles of the χ4
2 

distribution for the distribution of    from the simulation experiment. 

Unbounded ML refers to r-θ third quadrant ML estimated parameters, bounded ML refers to first 

quadrant ML r-θ estimated parameters. 

Λψ0
= 2( ( ˆ Θ ) − ( ˆ Θ ψ0

))
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FIG. A2.  Quantile-quantile plots of residuals from the models and data of Table 1 in the main 

text.  Unbounded ML refers to r-θ third quadrant ML estimated parameters, bounded ML refers 

to first quadrant ML r-θ estimated parameters.  Model abbreviations are: RPN- Ricker with 

process noise; TRPN unbounded ML- theta-Ricker with process noise; TRSS- theta-Ricker with 

process noise and observation error; BHPN- Beverton-Holt with process noise; γ-BHPN- 

generalized Beverton-Holt with process noise. 
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Figure A3



FIG. A3.  Grid of values ψ0 = (r0, θ0) over which joint profile likelihood values were calculated 

by maximizing the likelihood function Eq. A.3 in the remaining parameters dimensions (K, σp, 

σo).  Grid point symbols represent the following: solid points represent convergence away from 

the boundary σp = σo = 0.01, + represents convergence at σp < 0.01, and x shows values of ψ0 for 

which joint likelihood values are slightly higher than the global interior maximum likelihood 

value. 
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Figure A4 (part 1 of 4)
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FIG. A4.  Pgr data (circles) and predictions using models with global ML parameter estimates 

(solid line), local ML parameter estimates (dashed line, if different from the global ML ones; see 

Table A4), and ALT parameter estimates (dotted line). 
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FIG. A5.  For the C. oenas data set (A) shows the r-θ joint profile likelihood surface for a TRPN 

model with the ML estimated values of r and θ located at *.  (B) shows the pgr data (circles) and 

pgr predictions using the ML (solid line) and ALT (dashed line) parameters from Table A4.  (C) 

shows the r-θ joint profile likelihood surface for a TROE model with the ML estimated values of 

r and θ located at *.  For panels A and C, the contour lines are drawn at the 0.5 and 0.95 

quantiles of a chi-squared distribution with 2 degrees of freedom. 
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